

Medical Digitalization (Me-Dig IT) —A Construction Methodology for Medical Support Systems—

Norihiro Koizumi

2018 Overview of Mechanobioengineering

http://www.medigit.mi.uec.ac.jp/ovmbe-p.pdf

Koizumi Lab Report (Koizumi)

Due: July 6th, To report box in Mechanical Engineering Office or E-mail: nkoizumi@ieee.org

1. Choose one medical support system.

Reference:

<u>http://ieeexplore.ieee.org/search/searchresult.jsp?news</u> <u>earch=true&queryText=medical+robotics&x=0&y=0&ta</u> <u>g=1</u>

- Extract functional requirements and structure (decompose and reconstruct) them, considering the implementation of the system.
- 3. Extract one seed technology for one of the abovementioned functional requirements and discuss how to apply and develop the technology. http://www.medigit.mi.uec.ac.jp/jrm2013.pdf

References

http://ieeexplore.ieee.org/Xplore/guesthome.jsp

re – SearchResult – Windows Internet Explorer					
🌐 http://ieeexplore ieee.org/search/search/searchresult.jsp?newsearch=true&queryTe 🄎 🗹 🚱 😏 🗶 🧱 IEEE Xplore - SearchResult 🗙					
e IEEE explore	<u> </u>	検索 ▼ ↓ 詳細 ≫			
IEEE.org IEEE Xplore Digital Library IEEE Standards IEEE Spectrum More Sites Cart(0) Create Account 🖛 Sign In					
IEEE Xplore®	Access provided by: UNIVERSITY OF TOKY Sign Out	ro	∲IEEE		
BROWSE -	MY SETTINGS 🔻	WHAT CAN I ACCESS? About IEE	E Xplore Terms of Use Feedback ?		
SEARCH Advanced Search Preferences Search Tips More Search Options					
FILTER THESE RESULTS ?	SEARCH RESULTS		SEADCH HISTODY BETA		
Search within results:	You searched for: Medical Robot	5,876 Results returned	NEW! Search History BETA is now available using your		
Only show full text results	Results per page 25 💌	Sort by: Relevance	personal IEEE account.		
CONTENT TYPE Conference Publications	Select All on Page Deselect All First	1 2 3 4 5 >> Last >	STANDARDS DICTIONARY TERMS (What's this?)		
(5,263) Journals & Magazines (603) Early Access Articles (9)	Capsule type medical robot with magnetic drive in abdominal cavity Browse Standards Dictionary				
Books & eBooks (1) PUBLICATION YEAR	Nokata, M.; Kitamura, S.; Nakagi, T S. <u>Biomedical Robotics and Biomechatr</u> <u>2nd IEEE RAS & EMBS International</u> Digital Object Identifier: <u>10.1109/BI</u>	.; Inubusni, T.; Morikawa, ronics, 2008. BioRob 2008. Conference on IOROB.2008.4762835			
🔘 Single rear 💿 Kange	Publication Year: 2008 Page(s): 34	18 - 353			

Search Keywords: Medical Robotics, Rehabilitation Robotics, etc.

Koizumi Alab Me-Dig IT Effect

http://www.learner.org/interactives/renaissance/printing.html

Frans Johansson, "The Medici Effect", 2004.

EDIC

FRANS IOHANSSO

- When you step into an intersection of fields, disciplines, or cultures, you can combine existing concepts into a large number of extraordinary new ideas. The name I have given this phenomenon, the Medici Effect, comes from a remarkable burst of creativity in fifteenth-century Italy.

1. The Intersection

> 2. Creating the Medici Effect

http://www.agtc.com.tr/

3. Making Intersectional

Ideas Happen

Gutenberg's press Everybody can read bibles

della Tecnologia

Medical & BIO ARE NEW DIGITALS ! Mee-Dig IT Effect

Everybody can receive high-qualitymedicine by IT (Robot) & US technology

Me-Dig ITalization

Remote Ultrasound Diagnostic System (RUDS) (My Doctoral dissertation)

Arriving of the aging society

- Medical support system
- Remote ultrasound diagnostic system

- 1. Lessen regional difference in medicine
- 2. Lessen load of patient and medical doctor
- 3. Efficient medicine

Purpose

Establishment of construction methodology for the remote ultrasound diagnostic system

personal difference

personal difference of medical doctor and patient

WML Object of diagnosis

Shoulder pain in hemodialysis patients

Diagnostic image

[Diagnostic image ①] A tendon of the long head of the biceps brachi

ACRO.

3

[Diagnostic image ③] A long axis view of the tendon of the supraspinatus muscle

12

15

16

Required contact force 17

Objective

Clarify the required contact force.

Method

Confirm whether diagnostic image is proper or not by changing the contact force with step of 1 N from proper diagnostic image.

Condition

object : Diagnostic image 1~3 examinee : 3 patients 2 healthy men

Results

Required contact force Image 1:2 N~8 N Image 2:1 N~7 N Image 3:1 N~10 N (average of 5 examinee)

NML Required precision for orientation

19

Acromion of

Rotator cuff

Objective

Clarify the required precision for orientation.

Method

Confirm whether diagnostic image is proper or not by changing the orientation with step of 0.05 rad from proper diagnostic image.

Condition

object : Diagnostic image 2 examinee : 3 patients 2 healthy men

Functional requirements by adopting master—slave method

Install functions & implement the system

27

Mechanical configuration

29

(a) Mechanism to realize proper position and orientation

Change only orientation while adjusting position Highly rigid mechanism

Continuous Path control

Problem

Conventional control difficult to realize smooth motion not losing tracking performance

Technique: Continuous Path control

 Continuous paths are generated by using spline function
 Generated paths are connected to the previous paths continuously
 Smooth motion can be realized not losing tracking performance

High tracking performance by adopting CP control

32

Orientation error between master and slave

Tracking performance improved !

 Highly rigid mechanism
 Force sensors are installed to display contact states and keep stable contact

34

Impedance control

Problem

In conventional master-slave manipulation system, the object is static and the main purpose is to realize the same slave motion as master motion

Patient moves during diagnosis & difficult to keep stable contact

master and human

Safety motion and Stable contact

Technique: Impedance control

 Probe moves according to motion control law to display contact states
 Motion control regulation could be customized to keep stable contact

Control regulation in impedance control

Not using control regulation

even if Fs > Fm force = Fm - Fs

 Change only orientation while adjusting position
 Highly rigid mechanism
 Force sensors are installed to display contact states and keep stable contact

Dynamic control switching

Favorable control changes !

In conventional system, There is only one control through the work

Technique: Dynamic control switching

Manipulability enhancement by switching controller in accordance with probe task

 Probe manipulating tasks are recognized according to contact force, handling force, and distance information
 Impedance parameters should be switched by presumed tasks to enhance manipulability

39

Manipulability enhanced through diagnosis!

Realized system configuration

40

10 km between master and slave site
 [master site] medical doctor and master in multimedia cockpit
 [slave site] patient, helper and slave in consulting room
 4384 kbps for image & audio
 128 kbps for control

MIL Contact Force in Remote Diagnosis 41

Orientation Precision in Remote Diagnosis

Master orientation

Orientation rad

Orientation rad

Orientation error

rad

(1) Acquire the first diagnostic image

(2) Acquire the second

diagnostic image

1

0.5

0

1

0.5

0

-0.5

0.1

0.05

-0.05

-0.1

0

-0.5

Rotate

wrist

50

50

(4) Acquire the fourth diagnostic image

Within the tolerance!

Time s

	Remote	Normal
Effusion	No	No
Buckling	Yes	Yes
DSH	5.3mm	5.5mm
Balloon sign	Yes	Yes

Same characteristic values acquired!

Diagnostic Time

Same level of diagnostic time!

Non-Invasive Ultrasound Theranostic System (NIUTS)

Me-Dig ITalization

Koizumi Alab Me-Dig IT Effect

http://www.learner.org/interactives/renaissance/printing.html

ON THE <u>Sh</u>oulders

GIANTS

Frans Johansson, "The Medici Effect", 2004.

EDIC

FRANS IOHANSSO

- When you step into an intersection of fields, disciplines, or cultures, you can combine existing concepts into a large number of extraordinary new ideas. The name I have given this phenomenon, the Medici Effect, comes from a remarkable burst of creativity in fifteenth-century Italy.

1. The Intersection

> 2. Creating the Medici Effect

http://www.agtc.com.tr/

3. Making Intersectional

Ideas Happen

Gutenberg's press Everybody can read bibles

della Tecnologia

Medical & BIO ARE NEW DIGITALS ! Med-Dig IT Effect

Everybody can receive high-qualitymedicine by IT (Robot) & US technology

Koizuni

Related works

Robotics

[1] T.Yoshikawa, et. al, "Toward Observation of Human Assembly Skill Using Virtual Task Space," Experimental Robotics VIII, 2003.

[2]M.Kaneko, et,al, "Hyper Human Vision / Manipulation," http://www.robotics.hiroshimau.ac.jp/hyper_human_manipulation/index-e.html.

[3] M. Mochimaru, et. al, "Digital Human Research Center," http://www.dh.aist.go.jp/en/

Medical and welfare robotics

[4] A. Knoll, et al., "Human-Machine Skill Transfer Extended by a Scaffolding Framework," IEEE International Conference on Robotics and Automation (ICRA), 2008.

[6] G. Zong, et al., "Visually Servoed Suturing for Robotic Micro Surgical Keratoplasty," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2006. [5] Y. Yamauchi, et al., "Surgical Skill Evaluation by Force Data for Endoscopic Sinus Surgery Training System," Medical Image Computing and Computer-Assisted Intervention (MICCAI'02), 2002.

[7] O. Fukuda, T. Tsuji, M. Kaneko, A. Otsuka, "A Human-Assisting Manipulator Teleoperated by EMG Signals and Arm Motions", IEEE Trans on Robot. and Automat., Vol.19, No.2, 2003.

Our group

Technologizing and digitalizing tech.

[8] N.Koizumi, M.Mitsuishi, et.al., "Construction methodology for a remote ultrasound diagnostic system," IEEE Trans. on <u>Robotics</u>, Vol.25, No.3, 2009.

Non-invasive US therapeutic tech.

[9] J.Seo, N.Koizumi, M.Mitsuishi, et.al., "Threedimensional computer controlled acoustic pressure scanning and quantification of focused ultrasound,," IEEE Trans. on <u>Ultrasonics</u>, Ferroelectrics, and Frequency Control, Vol.57, No.4, 2010.

Medical theragnostic skills

[10] A.Ishikawa, et.al.. <u>Renal</u> preservation effect of ubiquinol, the reduced form of coenzyme Q10. Clin Exp Nephrol 2010; Sep 28.

[11] H.Tsukihara, et.al., "Prevention of Postoperative <u>Pericardial Adhesions</u> With a Novel Regenerative Collagen Sheet", Ann Thorac Surg, Vol.81, pp.650 –657, 2006.

[12] M.Kawasaki, et.al., "Effect of local injection of 10% lidocaine hydrochloride on painful osteoarthritis of the knee joint,," <u>PAIN</u> RESEARCH, Vol.14, 2003.

Koizumi Lab Robot mechanisms

Rigid mechanisms

TRO 2009 Affordance

Rigid mechanisms

Highly rigid mechanisms realize precise motions / servo controls.

RUDS

Remote Ultrasound Diagnostic System (RUDS)

Remote ultrasound diagnostic experiment 2

a long axis view of the tendon of the supraspinatus muscle

buckling: DSH: mm Patient No. 14 HD 6.5 year, Man 2001. 10. 30. Tue

TROBOT2009, ICRA 2003

Remote diagnosis achieved, First clinical use in the world (2001)

Koizuni Lab Robot motion cont.

Remote motion control

Servo motion control

ICRA 2014

Robot vision

ロボットビジョン技術

ASA-ASJ 2016

Sharing the worldview of medical professionals

HIFU therapy

HIFU (High Intensity Focused Ultrasound)

http://japan.gehealthcare.com/cwcjapan/static/rad/mri/MRgFUS_ExAblate2000

Y. Matsumoto, et. al.

Destruction of stone

JC Haifu System (Chongqing Haifu Medical Technology Co. Ltd.)

Commercial systems

Koizumi Lab Required precision

Liver vessels(CT)

Moving organs(MR)

1mm precision required

Koizuni Lab Non-Invasive Ultrasound Theragnostic System

Concept

Destroy stones / ablate tumours (focal lesions) by utilizing pinpoint focused ultrasound not injuring surrounding healthy tissues (skin, muscles, etc.) of patient by tracking, following, and monitoring focal lesion by US images which moves by respiration, heartbeat, etc.

Koizuni Lab Structured functional requirements

Koizuni • Lab Motion tracking for kidney tumours

Phantom experiments (kidney tumour)

Organ tracking

Precision: 2.5mm achieved !

Me-Dig IT

57

Ex-Vivo experiments (swine, model kidney stone)

Precision: 2.5mm achieved !

Human body motion tracking

Human body target (kidney stones / tumours) motion tracking for non-invasive ultrasound theragnostics

Motion tracking for human kidney

Human body motion tracking

60

Motion tracking for human kidney

Without servoing

With servoing

1mm precision achieved

Kidney motion compensation

Kidney motion compensation

Koizuni

1.3 mm precision achieved

Koizumi Lab Robust servoing

Koizumi Acknowledgements

MEDICAL & BIO ARE NEW DIGITALS !

Prof. Mamoru Mitsuishi Prof. Naohiko Sugita Dr. Deukhee Lee Dr. Joonho Seo Mr. Yugo Suzuki Mr. Dongjun Lee Mr. Kouhei Oota Mr. Tatsuya Fujii Mr. Atsushi Kayasuga Mr. Ryosuke Kondo Mr. Kyohei Tomita

Prof. Yoichiro Matsumoto Prof. Takashi Azuma Prof. Shin Yoshizawa Prof. Hiroyuki Tsukihara Prof. Kazushi Numata Prof. Horoyuki Fukuda Dr. Kiyoshi Yoshinaka Dr. Teiichiro Ikeda Mr. Akira Sasaki Mr. Hideki Takeuchi Mr. Yukio Kaneko